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Applying lattice-hole theory to gas solubility in polymers
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Summary

A recent theory based on the Simha-Somcynsky theory is applied to the solubility of the
1,1,1,2 tetrafluoroethane vapor in polystyrene. The requisite chemical potentials of the
vapor and of its condensate in contact with the polymer involve the equations of state
(eos) of the 3 species and are evaluated by means of literature information. Good
agreement with experiment ensues at 120ºC and pressures up to 35 bar. At 90ºC
systematic differences, increasing with pressure, result above 10 bar. These may be
caused by the use of melt theory in the glass transition region and/or an inadequacy of the
eos of the vapor at lower temperatures and elevated pressures. Extensions to further
pairs, gaseous mixtures and the glassy state are indicated.

Introduction
We have recently developed a theory of gas solubility in amorphous polymers (1) which
rests on the lattice-hole model of Simha-Somcynsky (SS) (2). Application to several
polymer-vapor pairs has demonstrated consistency with empirical relationships proposed
in the literature, and involving the critical temperature of the gas and the heat of solution.
The purpose of this paper is to investigate solubility relations for a particular vapor with
technological importance, namely 1,1,1,2 tetrafluoroethane (HFC). The polymer is to be
polystyrene. The next section summarizes the requisite results of the theory. In the third
section, comparisons of computations with experiment and further predictions are
presented.

Theory
What is required are the chemical potential of the gas µ1 to be balanced by the chemical
potential µ2 of the condensed gas in contact with the polymer. The requisite inputs to the
theory are

a) The equation of state (eos) of the gas.
b) The eos of the polymer.
c) The eos of the condensed vapor.
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Vapor: Chemical potential and eos
For µ1 we have simply the Gibbs free energy G = F + PV per mole, with F the Helmholtz
free energy and

where f(T) is the corresponding function for the ideal gas. Given the eos of the gas

P = P(V, T)   (2)

the integral is evaluated as function of volume and temperature. Since ultimately results
as functions of pressure and temperature are desired, an inversion of eq. (2) is required,
either analytically when eq. 2 appears in the form of a virial expansion, or otherwise
numerically (see the next Section).

Polymers and Condensed Vapor: eos
The two eos are obtained by means of the SS theory (2) which models the system as a
mixture of lattice sites occupied by a polymer segment or a small molecule, and empty
sites. The latter may be taken as a measure of free volume. The scaled eos takes the
form

where Q = (y  )-1, η = 2-1/6 y Q1/3, and y represents the fraction of occupied sites. Its
dependencence on volume and temperature is determined by a minimization of the
configurational free energy which yields the following condition:

Here s is the number of constituent segments per chain. The characteristic parameters of
the system are the maximum intersegmental attraction energy ε*, the intersegmental
repulsion volume v*, and the “flexibility” parameter c, i.e. 3c being the number of
volume dependent, external degrees of freedom. For a large s-mer 3c will be of the order
of s. For the condensed gas we set c = 1. Finally, the scaling parameters in eqs. 3 and 4 are

T* = [s(z – 2) + 2]ε* /(ck); P* = [s(z – 2) + 2]ε * /(sv*)   (5)

and the volume V* = v*/mo, where mo is the molecular segmental mass, and z the
coordination number of the lattice.

The Mixture: eos and Free Energy
Provided the assumption of random mixing is adopted, the generalization to
multiconstituent systems proceeds as follows (3): The scaled eqs. 3 and 4 retain their
validity and the scaling parameters become explicitly defined functions of composition.
For a binary system of mole fraction x1, the averaged functions are:
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< s > = x1s1 +(1 – x1)s2; < c > = x1c1 + (1 – x1)c2  (6)

To define the scaling parameters, see eq. 5, averages of ε* and v* are obtained in terms of
self and cross interactions, by means of the following equations:

with the δ’s adjustable parameters. The first relation generalizes the familiar geometric
mean rule. The second expresses an averaging of characteristic lengths rather than
volumes, considering the asymmetry of the chain (2,3).
With the above information at hand, the Gibbs free energy Gm of the mixture can be
evaluated as a function of T, P and x1 (1,3), i.e., omitting the averaging symbol

with <s> <m> = x1s1m1 + (1-x1)s2m2.
We recognize in eq. 9 contributions from the combinatory entropy of mixing holes and
occupied sites of the two constituents, equation of state terms, and kinetic energy
contributions. Finally, the chemical potential µ2 of the condensed gas follows from Gm

(4); that is

µ2 = Gm +(1 – x1)∂Gm / ∂x1 (10)

The lengthy analytical expressions for µ2 has been derived (5). It will be preferable in
the present context to employ numerical differentiation.

Applications:
Solubility relations of HFC in polystyrene (PS) have been studied experimentally (6).
We now wish to examine these data in terms of the theory presented. The eos of the



332

polymer is available and has been analyzed (7). As for HFC, gas as well liquid PVT data
have been obtained (8) and can now be discussed in terms of the theory.
The various procedures of extracting the scaling parameters from a superposition of the
scaled theoretical unto the experimental eos surface have been repeatedly discussed in the
literature and we refer to Ref. (1). Table 1 lists the numerical values of several quantities

Table 1. Parameters for HFC/PS Pair

s c m v* T* P* ε*/k δe δv

(g) (cc/g) (K) (bar) (K)
HFC 1 1 102.0 0.5532 3742.3 5514.2 311.86 1.104 1.166

PS 2134.4 772.1 58.47 0.9657 12725.4 6778.1 460.29 1.104 1.166

in addition to the scaling parameters. The molar mass and hence s for the polymer are
arbitrarily assumed. However, as has been shown earlier (1), the final results are
practically invariant with the molar mass of the polymer. The definition of the chain
segment and consequently the scaling values had to be revised from earlier findings. The
lattice picture requires at least approximate equality of the molecular sizes of the two
constituents. In this case this implies an adjustment of the chain segment to the repulsion
volume of the HFC molecule. The δ-values, disposable parameters, since the eos of the
mixture is unknown, are also exhibited. Equation 9 can thus be evaluated.
Reference (8) provides a 32 parameter eos for the vapor. We have not attempted to
reduce this equation to a simpler form, in order to maintain a maximal numerical
accuracy of the predicted solubilities. The eos is

Vc is the critical volume, and the ai are temperature dependent coefficients, with a1 = RT.
We dispense with exhibiting the actual expressions for the ai.
The direct evaluation of µ1 via the free energy integral, eq. (1), encounters convergence
problems. So, we proceed by computing the difference ∆µ1, where

Here the free energy refers to one mole and the subscript o indicates the ideal gas state.
For µ10 we have (9):

Finally, the solubility S is related to x1 by the expression

S = x1 x 1000 x m1 / [(1 – x1) x M2] (13)

where S is in mg HFC/g PS, and m1 and M2 are the molar masses of the constituents.
Finally, x1 is the numerical solution of the equation
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Fig. 1: Solubility isotherm of the PS/HFC pair. Symbols,
experiment (Ref. 6); line, theory.

Fig. 2: Solubility isotherm of the PS/HFC pair. Symbols,
experiment (Ref. 6); line, theory.
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Fig. 3: Predicted solubility isotherms of the PS/HFC pair.
Symbols, theory; lines, computer fits.

µ1(T,P) = ∆µ1 + µ10 = µ2(x1,T,P) (14)

Figure 1 displays the experimental solubility isotherm at 120°C and the solution of eq.
14. A gratifying agreement between theory and experiment is noted, with deviations
below 10%.
Figure 2 exhibits the results at 90°C. Systematic deviations appear above 10-15 bar. It
will be noted that we are in the glass transition region and the present theory applies only
to the equilibrium melt. On the other hand, as pointed out to us by Dr. P. Handa, the
problem may rest on the eos of the vapor at pressures approaching the saturation pressure.
In Fig. 2 as well as in Fig. 3 which shows computed points together with computer fitted
lines, maxima are predicted, shifting to higher pressures with increasing temperature. It
should be noted however, that the eos of the gas has been proven accurate only below
175°C and 65 bar. Moreover the computed chemical potential of the gas decreases with
increasing pressure at high pressures. Thus the predicted solubility at P > 65 bar is not
reliable.

Outlook. The way to a consideration of further systems, such as polystyrene paired with
CO2 or 1,1-dichloro-222-trifluoroethane, is open. Experimental tests of predictions over
wider ranges of variables are desirable, and hence also corresponding eos data. Next
there is the extension to gaseous mixtures. Finally, a consideration of solubility in the
non-equilibrium polymer glass comes to mind. Important results in the frame of the SS
theory have been obtained for the glassy state. Here the additional features of glass
formation history and relaxation toward equilibrium (physical aging) come into play.
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